Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Res ; 221: 115234, 2023 03 15.
Article in English | MEDLINE | ID: covidwho-2178500

ABSTRACT

INTRODUCTION: The use of electronic nicotine delivery systems (ENDS), or vaping, is a relatively recent phenomenon, and there are various gaps in our current knowledge regarding the specific effects of e-cigarettes, such as their immunological effects. The importance of this question became even more relevant in light of the COVID-19 pandemic. OBJECTIVE: This literature review examines the relationship between the use of electronic nicotine delivery systems (ENDS) and immunological effects to examine available information and identify gaps in the current knowledge. Our search strategy included studies focusing on the effects of ENDS on the immune response during infectious respiratory diseases such as COVID-19 and pneumonia. METHODS: Peer-reviewed studies presenting quantitative data published from 2007, the year that e-cigarettes were introduced to the US market until 2022 have been included. All studies were indexed in PubMed. We excluded papers on THC and EVALI (E-cigarette, or Vaping Product, Use Associated Lung Injury) as we wanted to focus on the effects of nicotine devices. RESULTS: Among the 21 articles that assessed the relationship between ENDS and immunological health effects, we found eight studies based on cell models, two articles based on both cell and mouse models, five articles based on mouse models, and six studies of human populations. Most of the articles identified in our review demonstrated a potential association between vaping and adverse immunological health effects. DISCUSSION: Overall, the evidence from the cell and animal studies indicates that there is a positive, statistically significant association between vaping and adverse immune response during infectious respiratory diseases. The evidence from human studies is not conclusive.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , Vaping , Animals , Mice , Humans , Pandemics , Lung , Nicotine , Vaping/adverse effects
2.
Environ Res ; 212(Pt A): 113240, 2022 09.
Article in English | MEDLINE | ID: covidwho-1773299

ABSTRACT

The COVID-19 pandemic has resulted in an extraordinary incidence of morbidity and mortality, with almost 6 million deaths worldwide at the time of this writing (https://covid19.who.int/). There has been a pressing need for research that would shed light on factors - especially modifiable factors - that could reduce risks to human health. At least several hundred studies addressing the complex relationships among transmission of SARS-CoV-2, air pollution, and human health have been published. However, these investigations are limited by available and consistent data. The project goal was to seek input into opportunities to improve and fund exposure research on the confluence of air pollution and infectious agents such as SARS-CoV-2. Thirty-two scientists with expertise in exposure science, epidemiology, risk assessment, infectious diseases, and/or air pollution responded to the outreach for information. Most of the respondents expressed value in developing a set of common definitions regarding the extent and type of public health lockdown. Traffic and smoking ranked high as important sources of air pollution warranting source-specific research (in contrast with assessing overall ambient level exposures). Numerous important socioeconomic factors were also identified. Participants offered a wide array of inputs on what they considered to be essential studies to improve our understanding of exposures. These ranged from detailed mechanistic studies to improved air quality monitoring studies and prospective cohort studies. Overall, many respondents indicated that these issues require more research and better study design. As an exercise to solicit opinions, important concepts were brought forth that provide opportunities for scientific collaboration and for consideration for funding prioritization. Further conversations on these concepts are needed to advance our thinking on how to design research that moves us past the documented limitations in the current body of research and prepares us for the next pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , COVID-19/epidemiology , Communicable Disease Control , Environmental Exposure/analysis , Humans , Pandemics , Particulate Matter , Prospective Studies , SARS-CoV-2
4.
JAMA Otolaryngol Head Neck Surg ; 147(9): 797-803, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1320055

ABSTRACT

Importance: During respiratory disease outbreaks such as the COVID-19 pandemic, aerosol-generating procedures, including tracheostomy, are associated with the risk of viral transmission to health care workers. Objective: To quantify particle aerosolization during tracheostomy surgery and tracheostomy care and to evaluate interventions that minimize the risk of viral particle exposure. Design, Setting, and Participants: This comparative effectiveness study was conducted from August 2020 to January 2021 at a tertiary care academic institution. Aerosol generation was measured in real time with an optical particle counter during simulated (manikin) tracheostomy surgical and clinical conditions, including cough, airway nebulization, open suctioning, and electrocautery. Aerosol sampling was also performed during in vivo swine tracheostomy procedures (n = 4), with or without electrocautery. Fluorescent dye was used to visualize cough spread onto the surgical field during swine tracheostomy. Finally, 6 tracheostomy coverings were compared with no tracheostomy covering to quantify reduction in particle aerosolization. Main Outcomes and Measures: Respirable aerosolized particle concentration. Results: Cough, airway humidification, open suctioning, and electrocautery produced aerosol particles substantially above baseline. Compared with uncovered tracheostomy, decreased aerosolization was found with the use of tracheostomy coverings, including a cotton mask (73.8% [(95% CI, 63.0%-84.5%]; d = 3.8), polyester gaiter 79.5% [95% CI, 68.7%-90.3%]; d = 7.2), humidification mask (82.8% [95% CI, 72.0%-93.7%]; d = 8.6), heat moisture exchanger (HME) (91.0% [95% CI, 80.2%-101.7%]; d = 19.0), and surgical mask (89.9% [95% CI, 79.3%-100.6%]; d = 12.8). Simultaneous use of a surgical mask and HME decreased the particle concentration compared with either the HME (95% CI, 1.6%-12.3%; Cohen d = 1.2) or surgical mask (95% CI, 2.7%-13.2%; d = 1.9) used independently. Procedures performed with electrocautery increased total aerosolized particles by 1500 particles/m3 per 5-second interval (95% CI, 1380-1610 particles/m3 per 5-second interval; d = 1.8). Conclusions and Relevance: The findings of this laboratory and animal comparative effectiveness study indicate that tracheostomy surgery and tracheostomy care are associated with significant aerosol generation, putting health care workers at risk for viral transmission of airborne diseases. Combined HME and surgical mask coverage of the tracheostomy was associated with decreased aerosolization, thereby reducing the risk of viral transmission to health care workers.


Subject(s)
Aerosols , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Medical Staff, Hospital , Tracheostomy/adverse effects , Virion , Animals , COVID-19/prevention & control , COVID-19/transmission , Comparative Effectiveness Research , Electrocoagulation/adverse effects , Hot Temperature , Humans , Humidity , Manikins , Masks , Risk Factors , SARS-CoV-2 , Swine , Tracheostomy/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL